skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lokugam_Hewage, Chamin Nalinda"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Current state-of-the-art point cloud data management (PCDM) systems rely on a variety of parallel architectures and diverse data models. The main objective of these implementations is achieving higher scalability without compromising performance. This paper reviews the scalability and performance of state-of-the-art PCDM systems with respect to both parallel architectures and data models. More specifically, in terms of parallel architectures, shared-memory architecture, shared-disk architecture, and shared-nothing architecture are considered. In terms of data models, relational models, and novel data models (such as wide-column models) are considered. New structured query language (NewSQL) models are considered. The impacts of parallel architectures and data models are discussed with respect to theoretical perspectives and in the context of existing PCDM implementations. Based on the review, a methodical approach for the selection of parallel architectures and data models for highly scalable and performance-efficient PCDM system development is proposed. Finally, notable research gaps in the PCDM literature are presented as possible directions for future research. 
    more » « less